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(57) ABSTRACT

A computer-implemented method of enhancing images
includes receiving one or more observed images, identifying
wavelet bases, and determining a downsampling operator. A
noise variance value is estimated and used to select a tuning
parameter. A blurring kernel is estimated based on one or
more system calibration parameter and used to determine a
low-pass blurring filter operator. A cost function is created
which generates one or more denoised super-resolution
images based on the observed images and the plurality of
wavelet bases. The cost function may include, for example, a
sparsity inducing norm applied to the plurality of wavelet
bases (with the tuning parameter applied to the sparsity
inducing norm) and a constraint requiring the one or more
denoised super-resolution images to be equal to a result of
applying the low-pass blurring filter operator and the down-
sampling operator to the one or more denoised super-resolu-
tion images. The one or more denoised super-resolution
images are generated by minimizing this cost function.

20 Claims, 22 Drawing Sheets
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1
SINGLE IMAGE SUPER RESOLUTION AND
DENOISING USING MULTIPLE WAVELET
DOMAIN SPARSITY

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. provisional appli-
cation Ser. No. 61/882,761 filed Sep. 26, 2013 which is incor-
porated herein by reference in its entirety.

TECHNOLOGY FIELD

The present invention relates generally to methods, sys-
tems, and apparatuses for performing image super-resolution
and denoising by inducing sparsity over multiple wavelet
bases. The disclosed methods, systems, and apparatuses may
be applied to natural scene images as well as medical images
from different modalities including Magnetic Resonance
Imaging (MRI), Computed Tomography (CT), Ultrasound,
etc. For example, it can be applied to process cardiac images
gathered by Magnetic Resonance Imaging (MRI) devices.

BACKGROUND

Single-image super-resolution is a technique used to obtain
ahigher resolution image given a single low resolution image.
The technique is used, for example, in the television industry
when the image to be shown has to be expanded to fill the
display. The technique is also used in medical applications to
minimize image acquisition time where there are speed or
dosage concerns. In conventional systems, single image
super-resolution is performed using techniques such as inter-
polation and patch-based dictionary learning. State of the art
results are obtained by patch based dictionary learning for
sparse representation. However, for these types of methods,
one needs to learn the dictionary on several training images,
which makes it intractable due to high computation time and
possibility of lack of training images.

Image denoising is the task of removing unwanted noise to
obtain a better quality, clearer image. Denoising is especially
applicable to medical imaging modalities such as ultrasound
or MRI which suffer from a high acquisition noise. For CT,
efficient image denoising can allow for significant dose radia-
tion dose reduction. The image denoising problem has been
addressed in several ways, such as wavelet denoising and
patch-based nonlocal algorithms. Wavelet-based sparsity
approaches have the benefit of carrying a regularization
parameter, which adjusts the smoothness-noise balance of the
resulting image. However, conventional wavelet approaches
are based on a single wavelet transform. The performance of
such a transform is limited due to the sparse representation
limitations of a single wavelet transform. Also, regularization
with a single wavelet basis may induce unwanted artifacts in
the solution.

SUMMARY

Embodiments of the present invention address and over-
come one or more of the above shortcomings and drawbacks,
by providing methods, systems, and apparatuses related to an
image processing technique which induces sparsity over mul-
tiple wavelet bases rather than a single wavelet to enhance
image denoising and single-image super-resolution process-
ing. This technique, referred to herein as the “Image Enhance-
ment Process,” may be applied to various image processing
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applications including, for example, the processing of Mag-
netic Resonance Imaging (MRI) images.

According to some embodiments of the present invention,
a computer-implemented method of enhancing images
includes receiving one or more observed images and deter-
mining a downsampling operator. A plurality of wavelet bases
is identified. These bases may include, for example,
Daubechies wavelet bases. The bases may also include cycle-
spinned versions or complex dual wavelet transform versions
of the Daubechies wavelet bases. A noise variance value is
estimated and used to select a tuning parameter. A blurring
kernel is estimated based on one or more system calibration
parameter and used to determine a low-pass blurring filter
operator. A cost function is created which generates one or
more denoised super-resolution images based on the
observed image(s) and the wavelet bases. The cost function
may include, for example, a sparsity inducing norm applied to
the wavelet bases (with the tuning parameter applied to the
sparsity inducing norm) and a constraint requiring the
denoised super-resolution images to be equal to the result of
applying the low-pass blurring filter operator and the down-
sampling operator to the denoised super-resolution images.
The denoised super-resolution images are generated by mini-
mizing this cost function, for example, using an alternating
direction method of multipliers (ADMM) algorithm.

According to other embodiments of the present invention,
denoising may be performed prior to, or independently from,
super-resolution. For example, in some embodiments, a com-
puter-implemented method of enhancing one or more images
includes creating a cost function which generates denoised
images based on one or more observed images and wavelet
bases, wherein the cost function applies a sparsity-inducing
norm to the wavelet bases. The denoised images are generated
by minimizing the cost function. In one embodiment, this
method also includes selecting a tuning parameter based on a
noise variance value and the cost function applies the tuning
parameter to the sparsity-inducing norm. In some embodi-
ments, super-resolution functionality is added to the afore-
mentioned method by estimating a blurring kernel based on
system calibration parameters, determining a low-pass blur-
ring filter operator based on the blurring kernel and determin-
ing a downsampling operator. Minimization of the cost func-
tion may then be constrained by applying the low-pass
blurring filter operator and the downsampling operator to the
one or more denoised images

Similarly, super-resolution may be performed prior to, or
independently from, denoising in some embodiments of the
present invention. For example, in some embodiments, a cost
function is created which generates one or more super-reso-
Iution images based on the observed images by applying a
sparsity-inducing norm to a plurality of wavelet bases. Then
one or more super-resolution images are generated by mini-
mizing the cost function, wherein minimization of the cost
function is constrained by requiring the generated super-
resolution images to be equal to the result of applying a
low-pass blurring filter operator and a downsampling opera-
tor to the one or more super-resolution images. Minimization
of'the cost function may be performed, for example, using an
iterative reweighted [.-1 norm minimization. Denoising may
be added by including one or more denoising terms in the cost
function. For example, in some embodiments, a noise vari-
ance value is estimated and used to select a tuning parameter.
The cost function can then apply the tuning parameter to the
sparsity-inducing norm.
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Additional features and advantages of the invention will be
made apparent from the following detailed description of
illustrative embodiments that proceeds with reference to the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other aspects of the present invention
are best understood from the following detailed description
when read in connection with the accompanying drawings.
For the purpose of illustrating the invention, there is shown in
the drawings embodiments that are presently preferred, it
being understood, however, that the invention is not limited to
the specific instrumentalities disclosed. Included in the draw-
ings are the following Figures:

FIG. 1 provides a system view of a system for performing
an Image Enhancement Process, according to some of
embodiments of the present invention;

FIG. 2 provides an example of denoising the Lena image
using a single wavelet;

FIG. 3 provides an example of denoising the Lena image
using MAP-TV;

FIG. 4 provides a zoomed-in portion of the image shown in
FIG. 2;

FIG. 5 shows an example of denoising the [.ena image with
the Image Enhancement Process described herein, according
to some embodiments of the present invention;

FIG. 6 provides a zoomed-in portion of the image shown in
FIG. 5;

FIG. 7 shows an example of denoising the [.ena image with
Db1-Db4, according to some embodiments of the present
invention;

FIG. 8 shows an example of denoising without cycle spin-
ning, according to some embodiments of the present inven-
tion;

FIG. 9 shows denoising with cycle spinning, according to
some embodiments of the present invention;

FIG. 10 provides a comparison of super-resolution using
conventional techniques versus the Image Enhancement Pro-
cess described herein, according to some embodiments of the
presented invention;

FIG. 11 provides a zoomed-in portion of the Lena image
comparing a conventional super-resolution technique and the
Image Enhancement Process described herein, according to
some embodiments of the presented invention;

FIG. 12 shows application of conventional techniques con-
ventional image processing techniques to the Cameraman
Image.

FIG. 13 shows application of Image Enhancement Process
described herein to the Cameraman Image, according to some
embodiments of the presented invention;

FIG. 14 shows a comparison of conventional super-reso-
Iution techniques with the Image Enhancement Process
described herein, according to some embodiments of the pre-
sented invention;

FIG. 15 shows a comparison of images processed by Image
Enhancement Process described herein, with and without
various combinations of cycle-spinning and dual complex
wavelets, according to some embodiments of the presented
invention;

FIG. 16 illustrates a series of images illustrating the effect
of'adding spinning and dual complex wavelet transform to the
bases of Db1-Db4, according to some embodiments of the
presented invention;

FIG. 17 illustrates a comparison of the Image Enhance-
ment Process, as implemented in some embodiments of the
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4

present invention, with the conventional super-resolution
method of Adaptive Sparse Domain Selection (ASDS) using
the Lena image;

FIG. 18 provides an additional comparison of the image
shown in FIG. 17, zoomed into the top corner of the image;

FIG. 19 illustrates an additional comparison of the Image
Enhancement Process with ASDS, using the Cameraman
image;

FIG. 20 illustrates a comparison of the Image Enhance-
ment Process, as implemented in some embodiments of the
present invention, with Variational Bayesian based SR
(VBSR) using the Lena image;

FIG. 21 illustrates a comparison of the Image Enhance-
ment Process, as implemented in some embodiments of the
present invention, with VBSR using the Cameraman image;
and

FIG. 22 illustrates an exemplary computing environment
within which embodiments of the invention may be imple-
mented

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

The following disclosure describes the present invention
according to several embodiments directed at methods, sys-
tems, and apparatuses for performing an Image Enhancement
Process utilizing multiple wavelet domain sparsity image
processing. Briefly, sparsity is induced over multiple wavelet
bases instead of a single one for use in image denoising and/or
super-resolution applications. The technology described
hereinis especially applicable, but by no means limited to, the
denoising and super-resolution of MRI images.

FIG. 1 provides a system view 100 of a system for perform-
ing an Image Enhancement Process, according to some of
embodiments of the present invention. In the example of FIG.
1, the Image Enhancement Process performs both denoising
and super-resolution by inducing sparsity on multiple wavelet
bases. However, as explained in greater detail below, in other
embodiments of the present invention, sparsity may be
induced on multiple wavelets to only perform denoising or
super-resolution independently.

In the example of FIG. 1, a Receiver Component 110A in
the Image Processing Computer 110 receives an Observed
Image Sequence 120 (e.g., including one or more MRI
images) from the MRI Device 105. A Wavelet Identification
Component 110B identifies a group of wavelet bases based on
input from the user provided via User Computer 115. Such
input may be provided at the time that the Image Enhance-
ment Process is performed by the Image Processing Com-
puter 110. Alternatively, such input may be read from a file
generated by the user prior to execution of the Image
Enhancement Process. Moreover, in some embodiments, the
group of wavelet bases is automatically identified by the
system and communication with the User Computer 115 is
not required.

Continuing with reference to FIG. 1, a Noise Variance
Estimation Component 110C in the Image Processing Com-
puter 110 estimates the variance of the noise in the Observed
Image Sequence 120 using one or more techniques known in
the art. A Blurring Kernel Estimation Component 110D esti-
mates a blurring kernel to provide smoothing of the Observed
Image Sequence 120 based on system calibration parameters
provided by User Computer 115. These system calibration
parameters may provide, for example, an identification of
item of interest captured in the Observed Image Sequence 120
which, in turn, may be used to determine a size for the esti-
mated blurring kernel.
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An Image Enhancement Component 110E included in the
Image Processing Computer 110 creates and applies a cost
function to the Observed Image Sequence 120 to generate one
or more denoised and super-resolved images based on the
group of wavelet bases identified by the Wavelet Identifica-
tion Component 110B. To perform super-resolution, the
Image Enhancement Component 110E may determine a low-
pass blurring filter operator based on the estimated blurring
kernel and a downsampling operator based on the selected
downsampling value. The content of the cost function may
then include, for example, a sparsity inducing norm applied to
the wavelet bases and a constraint requiring the one or more
generated images to be equal to a result of applying the
low-pass blurring filter operator and the downsampling
operator to the generated images. The Image Enhancement
Component 110E then generates the denoised, super-resolu-
tion images by minimizing the cost function. This minimiza-
tion may be solved using various techniques known in the art
including, for example, Alternating Direction Method of
Multipliers (ADMM), Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA), Conjugated Gradient, or Gradient
Descent techniques. Once the image has been processed by
the Image Enhancement Component 110E it may be stored
for later use or displayed, for example, on the User Computer
115.

As noted above, the Image Enhancement Process may
include denoising and/or image enhancement features. The
paragraphs that follow describe each of these features in
greater detail and provide some examples of how these fea-
tures may be implemented according to different embodi-
ments of the present invention.

Assume the following linear model for the image denoising
problem:

y=x+e

M

wherey, x,and eeR 7*! are the observed image of n pixels, the
original image, and gaussian observation noise respectively.
The task is to recover an MxN image x from the noisy obser-
vationy by incorporating an appropriate prior distribution for
the image (n=MN).

Observing the inherent piece-wise smoothness in most
natural images, a total variation (TV) based image prior may
be used for modeling those signals of interest. There are two
variants of the TV penalty: isotropic and anisotropic. Selec-
tion of the particular variant utilized may depend on a variety
offactors including, for example, its relationship to the under-
lying transform used by the technique. For example, in some
embodiments, the anisotropic total variation is used due to its
close relation with redundant Haar wavelet transform. The
analytic expression of the anisotropic TV penalty of an image
is given as below:

N 2)
TV(x) = Z Ix(, j+ 1) =x(i, DI+ 1%+ 1, j) =i, j

J=1

e

i

where out of boundary values are handled by periodically
repeating the image in the spatial domain in both directions
such that the connection to redundant Haar transform is sat-
isfied. For a given piece-wise smooth image, the TV penalty
is expected to be low. Therefore, it is reasonable to minimize
the cost function given below in order to find a good estimate
of the original image to be recovered:

20

35

40

55

60

.1 2 3
mlnz lly —xl; + ATV(x)

where A is a trade-off parameter that balances the total varia-
tion of the image and the observation consistency. One Baye-
sian interpretation of this cost function is through MAP esti-
mation with the following probability distributions.

A significant improvement in denoising (and super-reso-
Iution, as described below) can be achieved by increasing the
size of the wavelet operator is increased (i.e., making it more
over-complete by adding multiple wavelet bases). The cost
function to be minimized for denoising becomes:

1 " @
min 3 ly =51 + Ay,

where y=[W "W, . .. W, 7|7 is concatenation of k wavelet
bases (e.g., from Db1-Dbk). To enhance performance, a 1,
norm (0<p<1) may be used instead of 1, norm is used as a
prior. For this purpose, in some embodiments, an iterative
reweighted 1, norm minimization method is used. In some
embodiments, an Alternating Direction Method of Multipli-
ers (ADMM) algorithm is constructed and used to solve the
above cost function. In this way, the desired smoothness of the
result may be adjusted by varying a regularization parameter.
In other embodiments, Equation (4) may be solved with alter-
native algorithms such as, for example, Fast Iterative Shrink-
age-Thresholding Algorithm (FISTA), Conjugated Gradient,
or Gradient Descent.

FIGS. 2-7 provide several example images that illustrate
the differences between applying conventional image pro-
cessing techniques and the Image Enhancement Process
described herein, according to some embodiments of the
present invention. Specifically, FIGS. 2-4 illustrate the results
of applying conventional techniques to processing the Lena
image (a standard image used in the art for testing image
processing techniques). FIG. 2 provides an example of
denoising an image using only Dbl (i.e., Haar) where, for
k=1, the peak signal-to-noise ratio (PSNR) is 31.70. FIG. 4
provides a zoomed-in portion of the image shown in FIG. 2.
FIG. 3 shows an example of the Lena image processed by
MAP-TYV, resulting with PSNR equal to 34.56. FIG. 5 shows
an example of denoising the Lena image with the Image
Enhancement Process described herein, according to some
embodiments of the present invention. The example of FIG. 5
was generated with Db1-Db8 and k=8, resulting in a PSNR of
35.36. FIG. 6 provides a zoomed-in portion of the image
shown in FIG. 5. For comparison, FIG. 7 shows an example of
denoising with Db1-Db4. As demonstrated by FIGS. 5-7, the
Image Enhancement Process provides a significant improve-
ment in the fidelity of the image.

In some embodiments, cycle-spinned wavelet transforms
may be incorporated into the concatenation of wavelet bases
1y in Equation (4) to further improve performance. For each
decimated wavelet basis that is used, the cycle-spinned ver-
sions may also be added to y to arrive at an undecimated
multiple bases 4-level wavelet transform. FIGS. 8 and 9 illus-
trate the improvement in terms of PSNR and visual quality on
the denoised images. Specifically, FIG. 8 shows an example
of' denoising without cycle spinning for k=8. The peak signal-
to-noise ratio in this example is 35.36. FIG. 9 shows denois-
ing with cycle spinning, also for k=8. Here the peak signal-
to-noise ratio is 35.57 and the details on the hat are better
preserved.
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Single image super-resolution problem can be formulated
under the following linear inverse model:

y=DHx+e (5)

where D is the downsampling operator, H is the low-pass
blurring filter operator with kernel h and e is the gaussian
noise vector with standard deviation of . In this work we will
assume that 0=0, although it can be extended to noisy cases.
The problem of finding the higher resolution image x from the
observation y is an ill-posed problem, i.e., there are infinitely
many solutions. One way to get a good estimate of the under-
lying high resolution image is to enforce priors on x. Natural
images are piece-wise smooth which makes using the total
variation (TV) penalty suitable for this purpose. The cost
function in this case would be:

min|ly — DHx[3 + ATV (x) (6)
for the noiseless case, it may be preferable to solve:

minTV(x) @)

s.t. y=DHx (8)

which is equivalent to:

min|[ ), ©

s.ty=DHx (10)

where Wd is the operator returning the detail coefficients of
undecimated Haar transform (in the case of anisotropic TV).
According to various embodiments of the present inven-
tion, the single image super-resolution problem is solved by
enforcing sparsity in multiple bases wavelet domain as was
done for denoising. The super-resolution problem becomes
an

minfppx],

s.t.y=DHx

where Y=[W, "W, . .. W, 7|7 is concatenation of k wavelet
bases, from Db1-Dbk. The 1, norm minimization may then be
solved, for example, via an iterative reweighted 1, norm mini-
mization. In some embodiments, the super-resolution tech-
nique described in Equations (11) and (12) is combined with
denoising technique described above with reference to Equa-
tion (4). Specifically, the following constraint may be added
to Equation (4) to provide for super-resolution in combination
with denoising:

12

s.t.|ly-DHx|,’<e (14)

where e is equal to the gaussian noise vector, as described
above.

The techniques described herein may also be extended to
denoising and super-resolution applications involving mul-
tiple image frames. For example, for a set of images N,
Equations (4) and (14) may be extended to:

1 (13)
ming >l =+l + g,
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-continued
N (14)
s.t. Z lly; — DHxll% <e

In some embodiments, additional terms may be added to the
above equations to compensate for motion correction
between image frames.

FIGS. 10-12 provide a comparison of super-resolution
using conventional techniques versus the Image Enhance-
ment Process described herein, according to some embodi-
ments of the presented invention. In the experiments used to
generate these figures, a low resolution image was obtained
from a higher resolution image, by first applying a Gaussian
filter h, and downsampling with ascale ofr. FIG. 10 shows the
results where r=3 and h has a size of 7, with standard deviation
of 2. In FIG. 10, Image 1020 shows the original image. Image
1005 and 1010 show the results of processing the Image 1020
with the convention techniques of a Bicubic Interpolation and
TV super-resolution respectively. These images 1005 and
1010 have PSNR values of 26.88 and 31.45, respectively.
Image 1015 shows the results of processing Image 1020 using
the Image Enhancement Process described herein with mul-
tiple wavelet bases Db1-Db8. In Image 1015, the PSNR is
32.93, asignificant improvement over the conventional tech-
niques.

FIG. 11 provides a zoomed-in portion of the Lena image,
demonstrating that artifacts around the edges introduced by
TV are minimized, if not eliminated altogether, when the
Image Enhancement Process described herein are used. In
particular, Image 1105 shows the Lena image processed by
TV where there is an undecimated Haar penalty. This may be
contrasted with Image 110 which reshows the results of pro-
cessing the image with the Image Enhancement Process,
where there is a Db1-Db8 penalty.

FIGS. 12 and 13 show a comparison of the Image Enhance-
ment Process described herein with conventional techniques
when applied to the standard test image referred to as the
“Cameraman.” The original Cameraman image is shown in
Image 1315 of FIG. 13. FIG. 12 shows two images 1205 and
1210 illustrating the results of applying a Bicubic Interpola-
tion (PSNR=28.39) and TV (PSNR=34.74), respectively.
This may be contrasted with FIG. 13 where the Image
Enhancement Process described herein is applied to the Cam-
eraman Image. Specifically, image 1305 shows Dbl1-Db4
(PSNR=36.09) and image 1310 shows Dbl-Db8
(PSNR=38.83). It can be seen from FIGS. 12 and 13 that
Image Enhancement Process gives significantly better results
in terms of both PSNR and visual quality.

FIGS. 14-16 show a comparison of the Image Enhance-
ment Process, as implemented according to some embodi-
ments of the present invention, with conventional interpola-
tion techniques. FIG. 14 shows the results of interpolating the
Lena image. Specifically, images 1405, 1410, and 1415 show
the results of processing with Bicubic Interpolation
(PSNR=29.78), Sparse Mixing Estimation (PSNR=31.00),
and Spatially Adaptive Iterative Singular-value Thresholding
(PSNR=30.99), respectively. Image 1420 shows the results
using the Image Enhancement technique described herein,
with Db1-Db8 (PSNR=36.13).

As noted above, cycle spinning may be added to each basis
(Db1-Db8) to further improve the results both in terms of
PSNR and visual quality. In addition to the bases of Db1-Db8,
a complex dual wavelet transform is also added in order to
include directed filters in the wavelet transform . However,
as can be seenin FIG. 15, adding both cycle spinning and dual
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complex wavelet transform may result in a decrease in PSNR
because now the transform is too redundant. Image 1505
shows Db1-Db8 (PSNR=36.13). Image 1510 shows Dbl-
Db8+ cycle spinning (PSNR=36.51). Image 1515 illustrates
Db1-Db8+ dual complex wavelet (PSNR=36.71), Db1-Db8+
dual complex wavelet+cycle spinning (PSNR=36.56). The
same idea may be repeated by using only 4 bases as the
starting point. For example FIG. 16 illustrates a series of
images which demonstrate that adding spinning and dual
complex wavelet transform to the bases of Db1-Db4, results
in a significant improvement both in PSNR and visual quality.
Image 1605 shows the results for Db1-Db4 where PSNR is
35.53. In image 1610 cycle-spinning is added and PSNR
increases to 36.62. Image 1615 shows the results when Db1-
Db4 is combined with a dual complex waveform, resulting in
PSNR 0f36.58. Combining Db1-Db4 with both a dual com-
plex wavelet and cycle spinning results in image 1620, which
has a PSNR value of 36.91.

FIGS. 17 and 18 illustrate comparisons of the Image
Enhancement Process, as implemented in some embodiments
of the present invention, with the conventional super-resolu-
tion method of Adaptive Sparse Domain Selection (ASDS)
using the Lena image. FIG. 17 provides a comparison of an
image 1705 processed by the Image Enhancement Process
described herein (resulting in a PSNR 0f36.91) and an image
1710 processed by ASDS (resulting of a PSNR of 36.54).
FIG. 18 provides an additional comparison of the image
shown in FIG. 17, zoomed into the top corner of the image.
This comparison shows that details (high frequencies) are
recovered better with the Image Enhancement Process. Spe-
cifically image 1805 (processed by the Image Enhancement
Process) resulted in a PSNR of 36.91, while image 1810
(processed with ASDS) results in a PSNR of 36.54. It can be
seen that our method gives better results in terms of visual
quality (note the preserved details on the “hat”) and in terms
of PSNR.

FIG. 19 illustrates another comparison of the Image
Enhancement Process with ASDS, using the Cameraman
image. Image 1905 shows the results for the Image Enhance-
ment Process (PSNR=27.90), while image 1910 shows the
results for ASDS (PSNR=28.00). Although having slightly
lower PSNR, the Image Enhancement Process preserves the
details better (note the grass). The Image Enhancement Pro-
cess gives competitive results with those of ASDS. It should
be noted that a benefit of Image Enhancement Process is that
it may not require any set of training images whereas ASDS
has to learn a dictionary from training data.

FIGS. 20 and 21 illustrate comparisons of the Image
Enhancement Process, as implemented in some embodiments
of the present invention, with Variational Bayesian based SR
(VBSR). FIG. 20 provides the results for the Lena image.
Image 2005 shows the results for VBSR, while image 2010
shows the results for the Image Enhancement Process. FIG.
21 provides the results for the Cameraman image. In FIG. 21,
image 2105 shows the results for VBSR, while image 2110
shows the results for the Image Enhancement Process. Note
that no ringing artifacts are present in image 2110.

FIG. 22 illustrates an exemplary computing environment
2200 within which embodiments of the invention may be
implemented. For example, computing environment 2200
may be used to implement one or more components of system
100 shown in FIG. 1. Computers and computing environ-
ments, such as computer system 2210 and computing envi-
ronment 2200, are known to those of skill in the art and thus
are described briefly here.

As shown in FIG. 22, the computer system 2210 may
include a communication mechanism such as a system bus
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2221 or other communication mechanism for communicating
information within the computer system 2210. The computer
system 2210 further includes one or more processors 2220
coupled with the system bus 2221 for processing the infor-
mation.

The processors 2220 may include one or more central
processing units (CPUs), graphical processing units (GPUs),
or any other processor known in the art. More generally, a
processor as used herein is a device for executing machine-
readable instructions stored on a computer readable medium,
for performing tasks and may comprise any one or combina-
tion of, hardware and firmware. A processor may also com-
prise memory storing machine-readable instructions execut-
able for performing tasks. A processor acts upon information
by manipulating, analyzing, modifying, converting or trans-
mitting information for use by an executable procedure or an
information device, and/or by routing the information to an
output device. A processor may use or comprise the capabili-
ties of a computer, controller or microprocessor, for example,
and be conditioned using executable instructions to perform
special purpose functions not performed by a general purpose
computer. A processor may be coupled (electrically and/or as
comprising executable components) with any other processor
enabling interaction and/or communication there-between. A
user interface processor or generator is a known element
comprising electronic circuitry or software or a combination
of both for generating display images or portions thereof. A
user interface comprises one or more display images enabling
user interaction with a processor or other device.

Continuing with reference to FIG. 22, the computer system
2210 also includes a system memory 2230 coupled to the
system bus 2221 for storing information and instructions to be
executed by processors 2220. The system memory 2230 may
include computer readable storage media in the form of vola-
tile and/or nonvolatile memory, such as read only memory
(ROM) 2231 and/or random access memory (RAM) 2232.
The RAM 2232 may include other dynamic storage device(s)
(e.g., dynamic RAM, static RAM, and synchronous DRAM).
The ROM 2231 may include other static storage device(s)
(e.g., programmable ROM, erasable PROM, and electrically
erasable PROM). In addition, the system memory 2230 may
be used for storing temporary variables or other intermediate
information during the execution of instructions by the pro-
cessors 2220. A basic input/output system 2233 (BIOS) con-
taining the basic routines that help to transfer information
between elements within computer system 2210, such as
during start-up, may be stored in the ROM 2231. RAM 2232
may contain data and/or program modules that are immedi-
ately accessible to and/or presently being operated on by the
processors 2220. System memory 2230 may additionally
include, for example, operating system 2234, application pro-
grams 2235, other program modules 2236 and program data
2237.

The computer system 2210 also includes a disk controller
2240 coupled to the system bus 2221 to control one or more
storage devices for storing information and instructions, such
as a magnetic hard disk 2241 and a removable media drive
2242 (e.g., floppy disk drive, compact disc drive, tape drive,
and/or solid state drive). Storage devices may be added to the
computer system 2210 using an appropriate device interface
(e.g., a small computer system interface (SCSI), integrated
device electronics (IDE), Universal Serial Bus (USB), or
FireWire).

The computer system 2210 may also include a display
controller 2265 coupled to the system bus 2221 to control a
display or monitor 2266, such as a cathode ray tube (CRT) or
liquid crystal display (LCD), for displaying information to a
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computer user. The computer system includes an input inter-
face 2260 and one or more input devices, such as a keyboard
2262 and a pointing device 2261, for interacting with a com-
puter user and providing information to the processors 2220.
The pointing device 2261, for example, may be a mouse, a
light pen, a trackball, or a pointing stick for communicating
direction information and command selections to the proces-
sors 2220 and for controlling cursor movement on the display
2266. The display 2266 may provide a touch screen interface
which allows input to supplement or replace the communica-
tion of direction information and command selections by the
pointing device 2261.

The computer system 2210 may perform a portion or all of
the processing steps of embodiments of the invention in
response to the processors 2220 executing one or more
sequences of one or more instructions contained in a memory,
such as the system memory 2230. Such instructions may be
read into the system memory 2230 from another computer
readable medium, such as a magnetic hard disk 2241 or a
removable media drive 2242. The magnetic hard disk 2241
may contain one or more datastores and data files used by
embodiments of the present invention. Datastore contents and
data files may be encrypted to improve security. The proces-
sors 2220 may also be employed in a multi-processing
arrangement to execute the one or more sequences of instruc-
tions contained in system memory 2230. In alternative
embodiments, hard-wired circuitry may be used in place of or
in combination with software instructions. Thus, embodi-
ments are not limited to any specific combination ofhardware
circuitry and software.

As stated above, the computer system 2210 may include at
least one computer readable medium or memory for holding
instructions programmed according to embodiments of the
invention and for containing data structures, tables, records,
or other data described herein. The term “computer readable
medium” as used herein refers to any medium that partici-
pates in providing instructions to the processors 2220 for
execution. A computer readable medium may take many
forms including, but not limited to, non-transitory, non-vola-
tile media, volatile media, and transmission media. Non-
limiting examples of non-volatile media include optical
disks, solid state drives, magnetic disks, and magneto-optical
disks, such as magnetic hard disk 2241 or removable media
drive 2242. Non-limiting examples of volatile media include
dynamic memory, such as system memory 2230. Non-limit-
ing examples of transmission media include coaxial cables,
copper wire, and fiber optics, including the wires that make up
the system bus 2221. Transmission media may also take the
form of acoustic or light waves, such as those generated
during radio wave and infrared data communications.

The computing environment 2200 may further include the
computer system 2210 operating in a networked environment
using logical connections to one or more remote computers,
such as remote computing device 2280. Remote computing
device 2280 may be a personal computer (laptop or desktop),
amobile device, a server, arouter, a network PC, apeer device
or other common network node, and typically includes many
or all of the elements described above relative to computer
system 2210. When used in a networking environment, com-
puter system 2210 may include modem 2272 for establishing
communications over a network 2271, such as the Internet.
Modem 2272 may be connected to system bus 2221 via user
network interface 2270, or via another appropriate mecha-
nism.

Network 2271 may be any network or system generally
known in the art, including the Internet, an intranet, a local
area network (LAN), a wide area network (WAN), a metro-
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politan area network (MAN), a direct connection or series of
connections, a cellular telephone network, or any other net-
work or medium capable of facilitating communication
between computer system 2210 and other computers (e.g.,
remote computing device 2280). The network 2271 may be
wired, wireless or a combination thereof. Wired connections
may be implemented using Ethernet, Universal Serial Bus
(USB), RJ-6, or any other wired connection generally known
in the art. Wireless connections may be implemented using
Wi-Fi, WiMAX, and Bluetooth, infrared, cellular networks,
satellite or any other wireless connection methodology gen-
erally known in the art. Additionally, several networks may
work alone or in communication with each other to facilitate
communication in the network 2271.

An executable application, as used herein, comprises code
or machine readable instructions for conditioning the proces-
sor to implement predetermined functions, such as those of an
operating system, a context data acquisition system or other
information processing system, for example, in response to
user command or input. An executable procedure is a segment
of code or machine readable instruction, sub-routine, or other
distinct section of code or portion of an executable applica-
tion for performing one or more particular processes. These
processes may include receiving input data and/or param-
eters, performing operations on received input data and/or
performing functions in response to received input param-
eters, and providing resulting output data and/or parameters.

A graphical user interface (GUI), as used herein, comprises
one or more display images, generated by a display processor
and enabling user interaction with a processor or other device
and associated data acquisition and processing functions. The
GUI also includes an executable procedure or executable
application. The executable procedure or executable applica-
tion conditions the display processor to generate signals rep-
resenting the GUI display images. These signals are supplied
to a display device which displays the image for viewing by
the user. The processor, under control of an executable pro-
cedure or executable application, manipulates the GUI dis-
play images in response to signals received from the input
devices. In this way, the user may interact with the display
image using the input devices, enabling user interaction with
the processor or other device.

The functions and process steps herein may be performed
automatically or wholly or partially in response to user com-
mand. An activity (including a step) performed automatically
is performed in response to one or more executable instruc-
tions or device operation without user direct initiation of the
activity.

The system and processes of the figures are not exclusive.
Other systems, processes and menus may be derived in accor-
dance with the principles of the invention to accomplish the
same objectives. Although this invention has been described
with reference to particular embodiments, it is to be under-
stood that the embodiments and variations shown and
described herein are for illustration purposes only. Modifica-
tions to the current design may be implemented by those
skilled in the art, without departing from the scope of the
invention. As described herein, the various systems, sub-
systems, agents, managers and processes can be implemented
using hardware components, software components, and/or
combinations thereof No claim element herein is to be con-
strued under the provisions of 35 U.S.C. 112, sixth paragraph,
unless the element is expressly recited using the phrase
“means for”
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We claim:

1. A computer-implemented method of enhancing one or
more images, the method comprising:

receiving, by a computer, one or more observed images;

identifying, by the computer, a plurality of wavelet bases;

estimating, by the computer, a noise variance value;
estimating, by the computer, a blurring kernel based on one
or more system calibration parameters;

determining a low-pass blurring filter operator based on the

blurring kernel;

determining a downsampling operator;

selecting, by the computer, a tuning parameter based on the

noise variance value;

creating, by the computer, a cost function which generates

one or more denoised super-resolution images based on

the observed images and the plurality of wavelet bases,

the cost function comprising:

a sparsity inducing norm applied to the plurality of
wavelet bases,

the tuning parameter applied to the sparsity inducing
norm, and

a constraint requiring the one or more denoised super-
resolution images to be equal to a result of applying
the low-pass blurring filter operator and the down-
sampling operator to the one or more denoised super-
resolution images; and

generating, by the computer, the one or more denoised

super-resolution images by minimizing the cost func-
tion.

2. The method of claim 1, wherein the plurality of wavelet
bases comprise a plurality of Daubechies wavelet bases.

3. The method of claim 2, wherein the plurality of wavelet
bases further comprise a plurality of cycle-spinned versions
of the plurality of Daubechies wavelet bases.

4. The method of claim 2, wherein the plurality of wavelet
bases further comprise a plurality of complex dual wavelet
transform versions of the plurality of Daubechies wavelet
bases.

5. The method of claim 1, wherein the cost function is
minimized using an alternating direction method of multipli-
ers (ADMM) algorithm.

6. A computer-implemented method of enhancing one or
more images, the method comprising:

receiving one or more observed images;

identifying a plurality of wavelet bases;

creating a cost function which generates one or more

denoised images based on the observed images and the
plurality of wavelet bases, wherein the cost function
applies a sparsity-inducing norm to the plurality of
wavelet bases; and

generating the one or more denoised images by minimizing

the cost function, wherein minimization of the cost func-
tion is constrained by applying a low-pass blurring filter
operator and a downsampling operator to the one or
more denoised images.

7. The method of claim 6, further comprising:

estimating a noise variance value;

selecting a tuning parameter based on the noise variance

value,

wherein the cost function applies the tuning parameter to

the sparsity-inducing norm applied to the plurality of
wavelet bases.
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8. The method of claim 6, further comprising:

estimating a blurring kernel based on one or more system

calibration parameters;

determining the low-pass blurring filter operator based on

the blurring kernel; and

determining the downsampling operator.

9. The method of claim 6, wherein the plurality of wavelet
bases comprise a plurality of Daubechies wavelet bases.

10. The method of claim 9, wherein the plurality of wavelet
bases further comprise a plurality of cycle-spinned versions
of the plurality of Daubechies wavelet bases.

11. The method of claim 9, wherein the plurality of wavelet
bases further comprise a plurality of complex dual wavelet
transform versions of the plurality of Daubechies wavelet
bases.

12. The method of claim 6, wherein the cost function is
minimized using an alternating direction method of multipli-
ers (ADMM) algorithm.

13. The method of claim 6, wherein identifying the plural-
ity of wavelet bases comprises:

receiving a user selection of the plurality of wavelet bases.

14. A method of enhancing observed images, the method
comprising:

receiving one or more observed images;

estimating a blurring kernel based on one or more system

calibration parameters;

determining a low-pass blurring filter operator based onthe

blurring kernel;

determining a downsampling operator;

creating a cost function which generates one or more super-

resolution images based on the one or more observed
images by applying a sparsity-inducing norm to a plu-
rality of wavelet bases; and

generating the one or more super-resolution images by

minimizing the cost function, wherein minimization of
the cost function is constrained by requiring the one or
more super-resolution images to be equal to a result of
applying the low-pass blurring filter operator and the
downsampling operator to the one or more super-reso-
Iution images.

15. The method of claim 14, wherein minimization of the
cost function is performed using an iterative reweighted [.—1
norm minimization.

16. The method of claim 14, wherein the plurality of wave-
let bases comprise a plurality of Daubechies wavelet bases.

17. The method of claim 16, wherein the plurality of wave-
let bases further comprise a plurality of cycle-spinned ver-
sions of the plurality of Daubechies wavelet bases.

18. The method of claim 16, wherein the plurality of wave-
let bases further comprise a plurality of complex dual wavelet
transform versions of the plurality of Daubechies wavelet
bases.

19. The method of claim 14, wherein the cost function
includes one or more denoising terms applied to the observed
images.

20. The method of claim 19, further comprising:

estimating a noise variance value; and

selecting a tuning parameter based on the noise variance

value,

wherein the cost function applies the tuning parameter to

the sparsity-inducing norm applied to the plurality of
wavelet bases.



